
1. Introduction

Pneumonia is a form of acute respiratory infection that is most commonly caused by viruses or

bacteria. It can cause mild to life-threatening illness in people of all ages, however it is the single

largest infectious cause of death in children worldwide. Pneumonia alone accounted for 14% of

all deaths of children under 5 years in 2019 as reported by World Health Organization

(WHO)[1].

Pneumonia detection is commonly performed through the examination of chest X-Ray

radiographs (CXR) by highly-trained specialists. It usually manifests as an area or areas of

increased opacity on CXR, the diagnosis is further confirmed through clinical history, vital signs

and laboratory exams. However, computer-aided diagnosis using artificial intelligence based

solutions can be made available to a large population residing in remote locations at a minimal

cost.

2. Dataset

2.1. Training

The RSNA pneumonia detection challenge dataset[2] is composed of a subset of 30,000 exams

from the original 112,120 frontal-view X-ray images of 30,805 unique patients (train + test) from

the NIH ChestX-ray14 dataset released by Wang et al., 2017[3] using their original labels which

were derived from radiology reports and, therefore with the understanding that they were not

always accurate. The 30,000 selected exams were comprised of 15,000 exams with

pneumonia-like labels ('Pneumonia', 'Infiltration', and 'Consolidation'), a random selection of

7,500 exams with a 'No Findings' label, and another random selection of 7,500 exams without

the pneumonia-like labels and without the 'No Findings' label.



Six board-certified radiologists annotated all 30,000 chest radiographs distributed evenly to

determine whether lung opacities suspicious for pneumonia were present on the image with their

corresponding bounding box to specify the location.

The lung opacity class indicated a finding on chest radiograph that in a patient with cough and

fever has a high likelihood of being pneumonia.

In the cases labeled Not Normal/No Lung Opacity, no lung opacity refers to no opacity

suspicious for pneumonia. Other non-pneumonia opacities may be present.

We train on the official stage 1 train split of 25684 images provided by the RSNA pneumonia

detection challenge of which 5659 images are Pneumonia cases and rest not Pneumonia.

2.2. Test

We test our model on the stage 1 test set from the challenge comprising 1000 Chest

X-rays due to the annotations being publicly available. Of these 1000 images 353 are Pneumonia

cases and the rest not Pneumonia. Also to verify the robustness of our model and that it does not

suffer from geographic variance; We test our model on the Validation Set of CheXpert dataset by

Irvin et al., 2019[4] comprising of ChestX-rays from 200 unique patients manually annotated by

a group of 3 radiologists.





Fig. 3. Frequency of labels in the CheXpert validation set images

3. Methodology

3.1. Problem Formulation

The pneumonia detection task is an object detection task where samples without

bounding boxes are negative and contain no definitive evidence of pneumonia. Samples with

bounding boxes indicate evidence of pneumonia. The input is a frontal-view chest Xray image

and the output is zero or more bounding box annotations of the format

confidence x-min y-min width height



3.2. Model Architecture

We tested different architectures for consolidation detection and selected Retinanet by Lin et al.,

2020[5] (one-stage) & DetectoRS by Qiao et al., 2021[6] (two-stage) detectors as our testing

models for further analysis.

We use the MMDetection library by Chen et al., 2019[7] based on Pytorch by Paszke et

al., 2019[8] to train our models.

3.2.1. Retinanet

One-stage detectors such as YOLO[9] and SSD[10] are fast and simple by using a fixed grid of

boxes in substitute for region proposals but provide a relatively low accuracy of less than

10-40% over two-stage methods such as Mask R-CNN[11]. To address this problem caused by

the foreground-background class imbalance, the one-stage RetinaNet suggests focal loss.

This is a new loss function modified on standard cross entropy criterion. This function drastically

reduced the scaling factor of cross entropy loss to almost zero as well-classified class increases.

Therefore, it is able to concentrate on mis- classified examples during training and prevent

learning from being overwhelmed by most negative samples.

As the RetinaNet network adopts Feature Pyramid Network (FPN) backbone[12] on top of the

ResNet architecture[13], it generates multi-scale feature map layers with high resolution and rich



semantic information. Additionally, the model achieves dense coverage of boxes by using

anchors of 3 scales and 3 aspect ratios at each pyramid level in FPN implying the higher

potential that two-stage systems may not provide. Based on these factors, RetinaNet outperforms

the accuracy of two-stage methods such as Mask R-CNN as a one-stage detector.

Fig. 4. RetinaNet Detector Architecture

We use 101 layers Residual Network (Resnet101) initialized with weights from a model

pretrained on ImageNet [14] and Feature Pyramid Networks as backbone for feature extraction.

We use the default presets for the network as described in the corresponding paper for detecting

pneumonia.

We propose a novel training methodology that improves retinanet scores by 3-4%. The

RSNA dataset only had annotations for pneumonia classes, so we had images and bounding box

coordinates when pneumonia was present. A vanilla object detection model would learn the



features of pneumonia accurately but while predicting, it couldn't distinguish between conditions

visually similar to pneumonia, so we have a lot of false positives.

To make the model discriminate between such false positive cases, we introduce a new

class namely "similar to pneumonia but not it"(later referenced as "not pneumonia") and

obtained bounding box annotations for this using the false positives. Then we retrain an object

detection model with two classes: pneumonia and not pneumonia. Now, our model will predict

overlapping boxes on the non pneumonia class but it will have higher confidence while

predicting it as non pneumonia class so we can suppress these boxes using an empirical

threshold.

3.2.2. DetectoRS

DetectoRS is a two-stage detector which includes a Recursive Feature Pyramid and

Switchable Atrous Convolution. Recursive Feature Pyramid implements thinking twice at the

macro level, where the outputs of FPN are brought back to each stage of the bottom-up

backbone through feedback connections. Switchable Atrous Convolution instantiates looking

twice at the micro-level, where the inputs are convolved with two different atrous rates.



Fig. 5. Two-stage structure of Recursive Feature Pyramid



Fig. 6. Breaking of standard 3x3 convolution operation into switchable atrous

convolutions of rates r=1 and r=3, respectively. Weights are shared between two

convolutions(Locking mechanism)

We use Cascade RCNN[15] based DetectoRS model with 101 layers Residual Network

(Resnet101) initialized with weights from a model pretrained on ImageNet and FPN as backbone

for feature extraction. We use the default presets for the network as described in the

corresponding paper.

3.3. Images preprocessing, augmentations and post-processing

Images were augmented using albumnetations library[16] with rotation, translation,

scaling, HSV, RGB Shift, Random Brightness and contrast change, and horizontal flipping

(shearing and vertical flipping were turned off).

The Retinanet model was trained with images resized to 512 X 512 px, while for the

detectors model we utilized multiscale training the scale of the short edge was randomly sampled



from [512, 672], and the scale of the long edge is fixed as 672px. The images were normalized

according to imagenet stats before feeding into the network.

We aggressively used Non max suppression to eliminate overlapping bounding boxes for

both the models. For DetectoRS we use MultiScaleFlipAug as Test time augmentation to

improve the results.

3.4. Training

We use SGD with momentum[17](0.9) and weight decay(1e-4) for training our models.

We use a batch size of 8 for Retinanet and 2 for DetectoRS and an initial learning rate of 0.01

and 0.0025 respectively using the linear scaling rule[18]. We use linear warmup for the first 500

iterations with a warmup ratio of 1e-3. And a step-down policy after the third, sixth, and ninth

epoch i.e the learning rate is decreased by a factor of 10 at each of the mentioned epochs. The

code for training and inference can be found here.

4. Results

We evaluate for area under the receiver operating characteristic curve(AUC) for the RSNA test

set and CheXpert Validation set. A receiver operating characteristic(ROC) curve is a graph

showing the performance of a classification model at all classification thresholds. An ROC curve

plots True Positive Rate(TPR) vs. False Positive Rate(FPR) at different classification thresholds.

Lowering the classification threshold classifies more items as positive, thus increasing both False

Positives and True Positives. AUC provides an aggregate measure of performance across all

possible classification thresholds. We extract image level labels from bounding box outputs for a

https://github.com/SurajK7/pneumonia-detection.git


Chest X-ray Image as the maximum of Confidence score for all of the boxes predicted. For

comparison of performance on the CheXpert dataset we train a densenet-121[16] baseline model

as described in the CheXpert paper. We also evaluate an ensemble of Retinanet and DetectoRS

models, since the output distribution of models are different we use ranking before ensembling

the scores. The models score .90+ AUC on the RSNA stage 1 test data set, and also perform

surprisingly well on the CheXpert Validation set, even outperforming the baseline model trained

on the CheXpert train set. The detectoRS model is able to maintain the AUC score over datasets

which is a remarkable result as models generally perform worse on external dataset.

● AUC provides an aggregate measure of performance across all possible classification

thresholds.

Table 1. Results AUC score for all models on test sets

Model RSNA stage 1 test set
AUC

CheXpert Val set
AUC

Retinanet 0.922 0.867

Detectors 0.920 0.921

Ensemble of Retinanet and DetectoRS 0.925 0.903

CheXpert-Baseline 0.849 0.778



● Sensitivity (true positive rate) refers to the probability of a positive test, conditioned

on truly being positive.

● Specificity (true negative rate) refers to the probability of a negative test, conditioned

on truly being negative.

Table 2. Specificities and Sensitivities for DetectoRS model on RSNA test set

threshold sensitivity specificity

0.05 0.980170 0.616692

0.1 0.923513 0.751159

0.15 0.849858 0.840804

0.20 0.770538 0.884080

0.25 0.696884 0.913447

Table 3. Specificities and Sensitivities for Retinanet model on RSNA test set

threshold sensitivity specificity

0.05 0.997167 0.075734

0.1 0.985836 0.531685

0.15 0.923513 0.743431

0.20 0.807365 0.892235

0.25 0.623229 0.821477



An ROC curve plots TPR vs. FPR at different classification thresholds. Lowering the

classification threshold classifies more items as positive, thus increasing both False Positives and

True Positives. Below figures are ROC curves for the DetectoRS and Retinanet model on the

RSNA stage 1 test set respectively.

Fig. 7. ROC curve for DetectoRS model on RSNA stage 1 test set

Fig. 8. ROC curve for Retinanet model on RSNA stage 1 test set



5. Future Scope

Expert radiologists' presence is the topmost necessity to properly diagnose thoracic

diseases. The main aim of this paper is to improve the medical adeptness in remote areas where

the radiologists availability is limited. This study can facilitate the early diagnosis of Pneumonia

or more so reduce the workload on the available radiologists by having them inspect scans which

are likely to be pneumonia according to our model. In this study we work on the RSNA dataset

on a per image basis contrary to all the research that works on a bounding box basis. We also

propose a novel approach to distinguish pneumonia and pneumonia-like occurrences using

multistage training. This method seems to work well for single shot detectors, but not so much in

the case of multistage detectors. In the future we can research for the exact details leading to this

phenomenon.
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