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Sequence Analysis: NGS

• Utilizing neural networks (Restricted Boltzmann machine’s) and
clustering algorithms to identify certain important, representative
HIV-1 PR sequences from a pool of several hundred sequences.

1. Analysis of drug resistance in HIV protease, Shrikant Pawar, Chris Freas, Robert W. Harrison, and Irene T. Weber, BMC: 
Bioinformatics

2. Structural studies of antiviral inhibitor with HIV-1 protease bearing drug resistant substitutions of V32I, I47V and V82I, 
Shrikant Pawar, Yuan-FangWang, Andres Wong-Sam, Johnson Agniswamy, Arun K. Ghosh, Robert W. Harrison, and 
Irene T. Weber, Elsevier: Biochemical and Biophysical Research Communications



HIV-1 Protease Action
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Major and minor mutations 
associated with resistance to all clinical protease inhibitors

Adapted from Weber, Kneller, Wong-Sam. Future Med Chem 2015

Drug resistance is a severe problem

~100,000 sequences

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Patient 7

Patient n

PQVTLWQRPI VTIKIGGQLK EALLDTGADN TVLEEMSLPG KWKPKMIGGI GGFIKVRQYD QVSIEICGHI AIGTVLIGPT PVNIIGRNLL TQLGCTLNF



Seq ID FPV IDV NFV SQV ~100,000 sequences can be classified as resistant or non-resistant
12861       0.4 0.5 7.1 0.5
PQVTLWQRPI VTIKIGGQLK EALLDTGADNTVLEEMSLPG KWKPKMIGGI GGFIKVRQYD QVSIEICGHI AIGTVLIGPT PVNIIGRNLL TQLGCTLNF



Analysis Pipeline
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Encoding sequence-structure information

HIV-1 WT Protease

A Delaunay triangulation for a set P of points in a plane is a
triangulation DT(P) such that no point in P is inside the
circumcircle of any triangle in DT(P).

Delaunay triangulation on Wild Type HIV-1 Protease

X-cordinate

Z-
co

rd
in

at
e

Y-cordinate

Yu, X., Weber, I. T., & Harrison, R. W. Prediction of HIV drug resistance from genotype with encoded three-dimensional 
protein structure. BMC genomics, 2014



Restricted Boltzmann machine



Most of the high resistance fold sequences with class 2 were clustered in first 10 clusters for most of the selected inhibitors 
through both hierarchical and divisive clustering delineating a clean separation between non-resistant and resistant 

sequences. 

Divisive Clustering

ATV DRV FPV IDV

LPV NFV SQV TPV



From a pool of 100,000 only 2-35 sequences were 
selected common through all the 3 approaches, 
further utilized for structure guided drug design

1. The resistance status of the selected sequences should be identified.
2. Minimum number of sequences selected for inhibitors, NFV, SQV or
LPV would be some of the ideal candidates for testing in laboratory.

Category ATV DRV FPV IDV LPV NFV SQV TPV

H, D and K 0 0 20 (66) 0 35 (61) 2 (12) 5 (58) 0

Numbers in parenthesis are the cluster from which they were selected.



Sequence Analysis: NGS

• A Six-Gene-Based Prognostic Model Predicts Survival in Head and
Neck Squamous Cell Carcinoma Patients.

2. A Six-Gene-Based Prognostic Model Predicts Survival in Head and Neck Squamous Cell Carcinoma Patients, Shrikant
Pawar and Aditya Stanam, Springer: Journal of Maxillofacial and Oral Surgery

3. Common cancer biomarkers of breast and ovarian types identified through artificial intelligence, Shrikant Pawar, Tuck 
Onn Liew, Aditya Stanam, Chandrajit Lahiri, Wiley: Chemical Biology & Drug Design



Analysis Pipeline
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ROC curves, AUC values for the selected biomarker six genes, A 
reasonable prediction accuracy of 85.38, 85.89 and 86.20 % 

were found on test dataset with SVM



Kaplan-Meier survival (KM) curve comparing survival 
probability of patients with high six gene expression index in 

tumor and tumor free patients (P-value < 0.001).



Sequence Analysis: Microarray

• KIFCI, a novel putative prognostic biomarker for ovarian
adenocarcinomas.

3. KIFCI, a novel putative prognostic biomarker for ovarian adenocarcinomas: delineating protein interaction networks and
signaling circuitries, Shrikant Pawar, Shashikiran Donthamsetty, Vaishali Pannu, Padmashree Rida, Angela Ogden, Nathan
Bowen, Remus Osan, Guilherme Cantuaria, and Ritu Aneja, BMC: Journal of Ovarian Research
4. A centrosome clustering protein, KIFC1, predicts aggressive disease course in serous ovarian adenocarcinomas, Karuna
Mittal, Da Hoon Choi, Sergey Klimov, Shrikant Pawar, Ramneet Kaur, Anirban K. Mitra, Meenakshi V. Gupta, Ralph Sams,
Guilherme Cantuaria, Padmashree C. G. Rida, Ritu Aneja, BMC: Journal of Ovarian Research



Centrosome amplification in ovarian cancer and high 
KIFC1 expression in ovarian cancer and normal tissue.



Increased KIFC1 expression is associated with poorer overall 
survival in age-specific ovarian cancer patients and pathways 

associated with first degree neighbors of KIFC1 protein

KM Survival Analysis Protein Interactions GSEA Analysis
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